APP Users: If unable to download, please re-install our APP.
Only logged in User can create notes
Only logged in User can create notes

General Studies 3 >> Science & Technology

audio may take few seconds to load

GAGANYAAN 

GAGANYAAN 

1. Context

At a water Survival test facility operated by the Indian Navy in Kochi, the ISRO has started training for the recovery of crew members of its first human spaceflight, Gaganyaan.

2. Key Points

  • At the test facility, which can simulate different environmental and sea state conditions, the space agency is finalising a standard operating procedure to recover crew members as quickly as possible when the craft splashes down in the sea after re-entering the atmosphere.
  • While preparations have been going on since 2004 when the manned space mission was first endorsed by the ISRO Policy Planning Committee, there was a lack of clarity on when exactly the mission would be launched, although the target initially in the discussion was 2015.
  • In May 2016, the government told Lok Sabha, as it had done earlier that there was no plan for a manned mission to be launched in the "near future".
  • The mission would now be completed for less than Rs. 10, 000 crores.

3. The manned space mission

  • A manned space mission is very different from all other missions that ISRO has so far completed.
  • In terms of complexity and ambition, even the mission to the Moon (Chandrayaan) and Mars (Mangalyam) are nowhere in comparison.
  • For a manned mission, the key distinguishing capabilities that ISRO has had to develop include the ability to bring the spacecraft back to Earth after the flight and to build a spacecraft in which astronauts can live in Earth-like conditions in space.
  • Over the years, ISRO has successfully tested many of the technologies that are required, but many others are still to be developed and tested.

4. About GSLV Mk-III rocket

  • One of the most important requirements is the development of a launch vehicle that can carry heavy payloads into space.
  • The spacecraft carrying human beings called the crew module is likely to weigh over 5 to 6 tonnes.
  • ISRO's main launch vehicle, the PSLV (Polar Satellite Launch Vehicle), which carried the Chandrayaan and Mangalyaan missions too, can carry payloads that are barely up to 2 tonnes and that too only to orbits at about 600 km altitude from the Earth's surface.
  • That is why the development of GSLV Mk-III, a launch vehicle with capabilities to deliver much heavier payloads much deeper into space was necessary.
5. About Gaganyaan
  • After three decades of efforts, mainly concentrated on developing an indigenous cryogenic engine to power the rocket, ISRO successfully tested GSLV Mk-III, now called LVM-3 (Launch Vehicle Mark-3), in an experimental flight in December 2014.
  • Then, in June last year, ISRO successfully launched the first "developmental" flight of LVM-3, which carried the GSAT-19 satellite into space.
  • The LVM-3 is the declared launch vehicle for taking the manned crew module into space. Over the next few years, many more flights of GSLV are scheduled.
  • These will help ISRO in perfecting the cryogenic technology for sending up heavier and heavier payloads. 
  • The government approved the funding for the next 10 flights of GSLV MK-III at an estimated cost of Rs 4, 338.2 crores. 
  • This was supposed to take care of GSLV Mk-III missions till 2024.
 
5.1. Reentry and recovery tech
  • The satellites normally launched by ISRO, like those for communication or remote sensing are meant to remain in space, even when their life is over.
  • Even Chandrayaan and Mangalyaan were not meant to return to Earth.
  • Any manned spacecraft, however, needs to come back. This involves mastering the highly complicated and dangerous reentry and recovery ability.
  • While rentering Earth's atmosphere, the spacecraft needs to withstand very high temperatures, over several thousand degrees, which is created due to friction.
  • Also, the spacecraft needs to reenter the atmosphere at a very precise speed and angle and even the slightest deviation could end in disaster.
  • The first successful experimental flight of GSLV Mk-III on December 18, 2014, also involved the successful testing of an experimental crew module that came back to Earth after being taken to an altitude of 126 km into space.
  • Called the Crew module Atmospheric Reentry Experiment (CARE), the spacecraft reentered the atmosphere at about 80 km altitude and landed in the sea near the Andaman and Nicobar Islands from where it was recovered by the coast Guard.
  • The external configuration of that crew module was the same as that to be used in the manned flight. Many more tests would be done over the next few years.
 
5.2. Crew Escape System
 
  • This is a crucial safety technology, involving an emergency escape mechanism for the astronauts in case of a faulty launch.
  • The mechanism ensures the crew module gets a warning of anything going wrong with the rocket and pulls it away to a safe distance, after which it can be landed either on sea or on land with the help of attached parachutes.
  • On 5th July 2018, ISRO completed the first successful flight of the crew escape system.
  • A simulated crew module weighing about 3.5 tonnes was launched from Sriharikota.
  • It reached 2.7 km into space before unfurling its parachutes and floating back to the Earth's surface.
  • The system is likely to undergo many more tests in the coming years.

5.3.. Life support
  • The Environmental Control and Life Support System (ECLSS) is meant to ensure that conditions inside the crew module are suitable for humans to live comfortably.
  • The inside of the crew module is a twin-walled sealed structure that will recreate Earthlike conditions for the astronauts.
  • It would be designed to carry two or three astronauts.
The ECLSS maintains a steady cabin pressure and air composition, removes carbon dioxide and other harmful gases, controls temperature and humidity and managers parameters like fire detection and suppression, food and water management and emergency support.
  • While the layout and design of the ECLSS have been finalised, its many individual components and systems are in the process of being tested.
  • The design and configuration of the inside of the crew module have also been finalised.
  • Ground testing will have to be followed by tests in the space orbit while simulating zero gravity and deep vacuum.

5.4. Astronaut training

  • In the early part of the planning process, a proposal for setting up an astronaut training centre in Bangalore was floated. Initially targeted by 2012, it is yet to take off.
  • While ISRO still plans to set up a permanent facility, the selected candidates for the first manned mission will most likely train at a foreign facility.
  • Candidates will need to train for at least two years in living in zero gravity and dealing with a variety of unexpected experiences of living in space.
  • Some training would also be imparted at the Institute of Aerospace Medicine of the Indian Air Force at Bengaluru. 

6. From an idea to a plan

August 2004: ISRO Policy Planning Committee recommends manned space mission.
November 2006: National Committee comprising 80 scientists and technocrats endorses the proposal.
September 2007: First Public announcement of the human space programme.
February- March 2009: Another committee, comprising Montek Singh Ahluwalia, R Chidambaram, Roddam Narasimha, M G K Menon, Yash Pal, M S Swaminathan and K Radhakrishnan discusses the desirability and feasibility of the programme and expresses support. 
April 2010: Failure of GSLV-D3
December 2010: Failure of GSLV-F06
December 18, 2014: Successful testing of experimental flight of GSLV Mk-III; this also successfully tests an experimental crew module, demonstrating reentry capability.
June 2017: First developmental flight of GSLV Mk-III
July 2018: The first successful flight of the crew escape system
August 15, 2018: Prime Minister announces manned mission to take place before 2022.

For Prelims & Mains

For Prelims: Gagayaan, ISRO, GSLV-Mk-III, GSLV-F06, GSLV-D3, Environmental Control and Life Support System, Crew module Atmospheric Reentry Experiment, Chandrayaan,  Mangalyaan, GSAT-19 satellite, ISRO Policy Planning Committee, PSLV
For Mains:
1.  What is Gagayaan's mission? discuss its significance (250 Words)
2. Write a short note on the following components of Gagayaan. (each 125 Words)
A. Environmental Control and Life Support System
B. Crew Escape System
 
Source: The Indian Express

Share to Social